

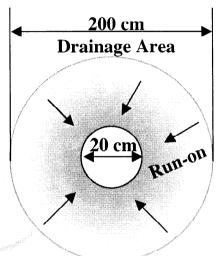
60% Hydrologic Study Review

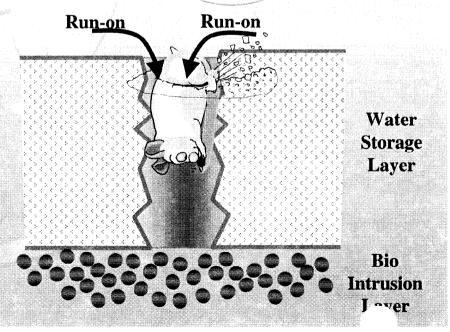
Defect Analysis

Method:

① Calculate volume of water draining in hole on daily basis

volume of water = daily precipitation x drainage area


② Convert to infiltration over cover surface

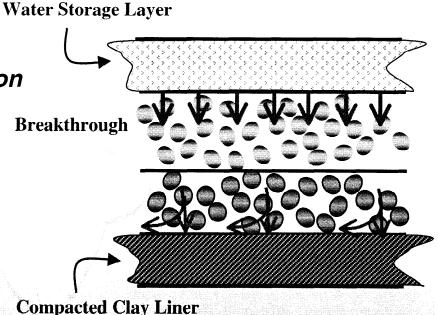

Infiltration from defect = volume of water

area of cover

Results

	Base Case	Extreme Case 281 gallons		
Average Annual Run-Off Into Hole	196 gallons			
Average Annual Infiltration Added to Breakthrough From Water Storage Layer	0.01 mm	0.02 mm		

60% Hydrologic Study Review

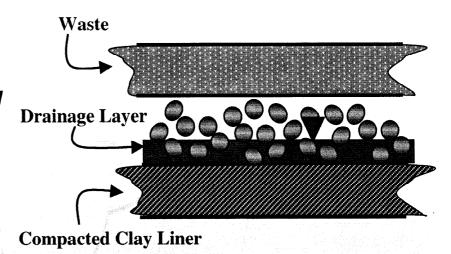

Lateral Drainage

Method:

Use saturated steady-state flow equation to confirm that lateral drainage has capacity to remove water that breaks through water storage layer

Results

Base Case	Extreme Case	
29,600 gallons/yr	36,000 gallons/yr	
894 mm/yr	1,094 mm/yr	
	29,600 gallons/yr	


Conclusion: Lateral drainage exceeds infiltration from upper cover so minimal head above clay surface

60% Hydrologic Study Review Percolation from Compacted Clay Liner

Study: Evaluation of Landfill-Liner Designs (Peyton R.L. & Schroeder P.R., 1990)

- ♦ Single compacted clay liner underlying leachate collection system
- ♦ Cover slope 3%
- ◆ Drainage length 23 m
- ♦ Inflow to lateral drainage
 - → 203 mm/yr
 - → 1,278 mm/yr
- ♦ Heads over clay range from 19 to 153 cm

Results from ICDF

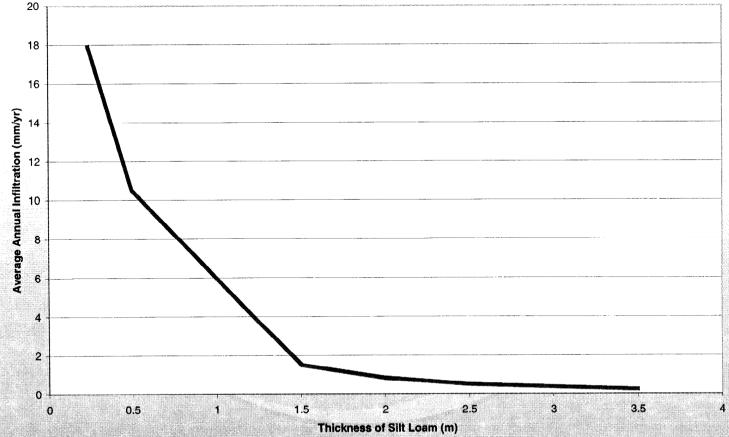
	Base Case	Extreme Case		
Inflow	0.41	0.48		
Percolation	0.08 mm	0.09 mm		

Conclusion:

Clay with $k_s = 1 \times 10^{-7}$ cm/sec 80% of inflow is lateral drainage and 20% percolation

60% Hydrologic Study Review Summary of Results

		Base Case		Extreme Case	
Point	Description	Value	Direction	Value	Direction
A	Average Annual Precipitation (mm/year)	237	Downward	338	Downward
A	Adjusted Average Annual Precipitation ¹ (mm/year)	236	Downward	335	Downward
В	Evapotransportion (mm/year)	235	Upward	334	Upward
C	Surface Runoff (mm/year)	1.33	Lateral	3.33	Lateral
D	Bio-intrusion ² (mm/year)	0.01	Downward	0.02	Downward
D	Water Storage Layer Breakthrough (mm/year)	0.40	Downward	0.46	Downward
Е	Lateral Drainage Removal Capacity ³ (m ³ /year)	112	Lateral	136	Lateral
F	Percolation at Base of Cover ⁴ (mm/year)	0.1	Downward	0.1	Downward


Notes:

- Precipitation adjusted based on surface runoff.
- 2. Bio-intrusion includes a hole in the water storage layer caused by an borrowing animal.
- 3. Lateral drainage removal capacity is based on the hydraulic head determined from the upper landfill cover section infiltration rate. Greater removal capacities are possible for a larger hydraulic head.
- 4. Percolation at the base of cover is based on 20 percent of the water storage layer breakthrough.

60% Hydrologic Study Review Thickness Sensitivity Analysis

